21 research outputs found

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    Adaptive Optical Burst Switching

    Get PDF
    International audienceWe propose a modified version of Optical Burst Switching (OBS) that adapts the size of switched data units to the network load. Specifically, we propose a two-way reservation OBS scheme in which every active source-destination pair attempts to reserve a lightpath and for every successful reservation, transmits an optical burst whose size is proportional to the number of active data flows. We refer to this technique as Adaptive Optical Burst Switching. We prove that the proposed scheme is optimal in the sense that the network is stable for all traffic intensities in the capacity region. We also evaluate the throughput and delay performance of adaptive OBS through both analysis and simulation in order to assess the practical load ranges at which the network may operate

    Throughput-Delay Trade-Offs in Slotted WDM Ring Networks

    Get PDF
    International audienceWe analyse the throughput-delay trade-offs that arise in an optical burst-switched slotted WDM ring, where each node can transmit and receive on a subset of the available wavelengths. Specifically, we compare SWING, an access control scheme that combines opportunistic transmission and dynamic reservations, with a purely opportunistic access scheme. By means of analysis, we highlight the shortcomings of the opportunistic scheme in terms of load balancing and fairness. We then evaluate the performance of both schemes by simulation under several traffic scenarios and show that SWING yields a good throughput-delay trade-off

    Dynamic bandwidth allocation for all-optical wide-area networks

    Get PDF
    International audienceNous proposons une architecture pour un réseau WAN tout-optique basée sur la notion de connexions optiques multipoint à multipoint, que nous appelons multipaths. L'ensemble des noeuds d'accès est partitionné en groupements pour l'émission et la réception. Une (ou plusieurs) longueur d'onde est allouée à chaque paire groupement-source groupement-destination. Les noeuds d'un même groupement-source se partagent la capacité de cette longuer d'onde selon un protocole MAC adapté. Les données transmises sur une longueur d'onde sont diffusées à tous les noeuds du groupement-destination, et chaque récepteur extrait alors les données qui lui sont destinées à partir du flux reçu. Le réseau que nous proposons ne nécessite que des composants existants et se compare favorablement en termes de complexité et d'efficacité énergétique à des solutions alternatives comme la commutation optique par paquet (Optical Packet Switching - OPS) ou la commutation optique par rafale (Optical Burst Switching - OBS). Nous présentons d'abord l'architecture multipath et comparons sa consommation d'énergie celle d'un réseau classique à base de routeurs. Nous proposons ensuite un algorithme d'allocation dynamique de la bande passante. Nous évaluons la performance de l'algorithme proposé à l'aide de simulations et nous montrons que notre solution permet d'atteindre d'excellentes performances en terme de délai et temps de réponse

    Performance analysis of subwavelength switching optical networks

    No full text
    Un défi majeur dans les réseaux d’aujourd’hui est de combler l’écart entre la haute vitesse de la transmission optique et la vitesse plus limitée du traitement électronique des données. Une option est de commuter les données directement dansle domaine optique. Dans cette thèse, nous proposons plusieurs solutions permettant la commutation dans le domaine optique à une granularité plus fine que la longueur d’onde, technique que nous appelons commutation sous-longueurd’onde. Pour montrer la pertinence des solutions proposées, nous analysons leur performance en termes de capacité de trafic, de débit et de délai. La performance est évaluée à la fois par des simulations et en utilisant des modèles de filesd’attente appropriés. Nous considérons d’abord le cas des réseaux métropolitains (Metropolitan Area Networks, MAN) et nous étudions la performance d’un anneau optique avec multiplexage en longueur d’onde (Wavelength Division Multiplexing, WDM) dans lequel la communication entre les noeuds du réseau se fait par insertion/extraction de données dans des créneaux temporels. Nous présentons un protocole entièrement distribué conçu pour assurer l’équité dansce réseau. Nous proposons également un mécanisme d’assemblage de paquets capable d’assurer des délais faibles ainsi que des taux de remplissage élevés. Nous proposons ensuite des solutions de commutation sous-longueur d’onde qui peuvent être appliquées dans le cas plus général des réseaux asynchrones. D’abord, nous proposons de résoudre le problème des collisions de la commutation optique par rafale (Optical Burst Switching, OBS) par la mise en oeuvre d’un mécanisme de réservation. Afin de maximiser l’utilisation des ressources, nous proposons d’adapter la taille de la rafale optique à la charge du réseau.Ensuite, nous proposons une solution alternative pour construire un réseau coeur tout-optique. A cette architecture, nous associons un protocole d’accès ainsi qu’un algorithme d’allocation dynamique de bande passante et nous analysons les performances de la solution proposée. Par le biais d’une étude de cas, nousmontrons que notre solution est capable de réduire considérablement la consommation énergétique par rapport aux architectures actuelles basées sur des routeurs IP. Enfin, nous proposons un nouveau dispositif optique capable derésoudre la contention directement dans le domaine optique. Nous montrons que ce dispositif simple peut être utilisé pour construire des réseaux optiques dynamiques à courte portée tels que les réseaux d’accès ou les centres de traitement de données.A key challenge in today’s networks is to bridge the gap between high-speed optical transmission and limited electronic processing. This can be achieved by enabling payload to be switched directly in the optical domain.A simple solutionto provide optical switching is by allocating one wavelength channel to each source-destination pair, a technique called Optical Circuit Switching (OCS). Due to lack of sharing, OCS suffers from limited scalability. To overcome this issue,the capacity of each wavelength channel must be dynamically shared among different source-destination pairs. This requires data to be switched at subwavelength granularity by means of subwavelength switching. In this thesis, wepropose several solutions which enable subwavelength switching in optical networks. To show the relevance of the proposed solutions, we analyse their performance in terms of traffic capacity, flow throughput and packet delay. Performance is evaluated both through simulations and by means of appropriate queueing models. We first consider the case of Metropolitan Area Networks (MAN) and we study the performance of synchronous time-slotted Wavelength DivisionMultiplexing (WDM) ring in which network nodes communicate by inserting and extracting data from time-slots. We present a fully distributedMedia Access Control (MAC) protocol designed to ensure fairness. We also propose a burst assembly mechanism able to ensure low assembly delays and high fill rates of the optical time-slots. We then propose subwavelength switching solutions which can be applied in the more general case of asynchronous wide area networks. We first propose to solve the contention problems of conventional Optical Burst Switching (OBS) and the low utilization issue of wavelength-routed OBS byimplementing a two-way reservation OBS scheme in which the size of the opticalburst increases proportionally with the network load so as to maximize resourceutilization. Next, we propose a solution for building an all-optical wide area network based on multipoint-to-multipoint lightpath sharing. We also design an associated MAC protocol and a dynamic bandwidth allocation algorithm and analyse the performance of the proposed solution. By means of a case study, we show that the proposed solution has the potential to considerably reduce power consumption with respect to current router-based architectures. Finally, we propose a novel optical device able to solve contention directly in the optical domain withoutrequiring any optical buffering, electronic signalling or header processing. We show that thissimple device can be used as a building block for dynamic and power efficient short-range optical networks such as access networks or data centers

    Analyse de performance des réseaux optiques à commutation en sous-longueur d'onde

    No full text
    Un défi majeur dans les réseaux d aujourd hui est de combler l écart entre la haute vitesse de la transmission optique et la vitesse plus limitée du traitement électronique des données. Une option est de commuter les données directement dansle domaine optique. Dans cette thèse, nous proposons plusieurs solutions permettant la commutation dans le domaine optique à une granularité plus fine que la longueur d onde, technique que nous appelons commutation sous-longueurd onde. Pour montrer la pertinence des solutions proposées, nous analysons leur performance en termes de capacité de trafic, de débit et de délai. La performance est évaluée à la fois par des simulations et en utilisant des modèles de filesd attente appropriés. Nous considérons d abord le cas des réseaux métropolitains (Metropolitan Area Networks, MAN) et nous étudions la performance d un anneau optique avec multiplexage en longueur d onde (Wavelength Division Multiplexing, WDM) dans lequel la communication entre les noeuds du réseau se fait par insertion/extraction de données dans des créneaux temporels. Nous présentons un protocole entièrement distribué conçu pour assurer l équité dansce réseau. Nous proposons également un mécanisme d assemblage de paquets capable d assurer des délais faibles ainsi que des taux de remplissage élevés. Nous proposons ensuite des solutions de commutation sous-longueur d onde qui peuvent être appliquées dans le cas plus général des réseaux asynchrones. D abord, nous proposons de résoudre le problème des collisions de la commutation optique par rafale (Optical Burst Switching, OBS) par la mise en oeuvre d un mécanisme de réservation. Afin de maximiser l utilisation des ressources, nous proposons d adapter la taille de la rafale optique à la charge du réseau.Ensuite, nous proposons une solution alternative pour construire un réseau coeur tout-optique. A cette architecture, nous associons un protocole d accès ainsi qu un algorithme d allocation dynamique de bande passante et nous analysons les performances de la solution proposée. Par le biais d une étude de cas, nousmontrons que notre solution est capable de réduire considérablement la consommation énergétique par rapport aux architectures actuelles basées sur des routeurs IP. Enfin, nous proposons un nouveau dispositif optique capable derésoudre la contention directement dans le domaine optique. Nous montrons que ce dispositif simple peut être utilisé pour construire des réseaux optiques dynamiques à courte portée tels que les réseaux d accès ou les centres de traitement de données.A key challenge in today s networks is to bridge the gap between high-speed optical transmission and limited electronic processing. This can be achieved by enabling payload to be switched directly in the optical domain.A simple solutionto provide optical switching is by allocating one wavelength channel to each source-destination pair, a technique called Optical Circuit Switching (OCS). Due to lack of sharing, OCS suffers from limited scalability. To overcome this issue,the capacity of each wavelength channel must be dynamically shared among different source-destination pairs. This requires data to be switched at subwavelength granularity by means of subwavelength switching. In this thesis, wepropose several solutions which enable subwavelength switching in optical networks. To show the relevance of the proposed solutions, we analyse their performance in terms of traffic capacity, flow throughput and packet delay. Performance is evaluated both through simulations and by means of appropriate queueing models. We first consider the case of Metropolitan Area Networks (MAN) and we study the performance of synchronous time-slotted Wavelength DivisionMultiplexing (WDM) ring in which network nodes communicate by inserting and extracting data from time-slots. We present a fully distributedMedia Access Control (MAC) protocol designed to ensure fairness. We also propose a burst assembly mechanism able to ensure low assembly delays and high fill rates of the optical time-slots. We then propose subwavelength switching solutions which can be applied in the more general case of asynchronous wide area networks. We first propose to solve the contention problems of conventional Optical Burst Switching (OBS) and the low utilization issue of wavelength-routed OBS byimplementing a two-way reservation OBS scheme in which the size of the opticalburst increases proportionally with the network load so as to maximize resourceutilization. Next, we propose a solution for building an all-optical wide area network based on multipoint-to-multipoint lightpath sharing. We also design an associated MAC protocol and a dynamic bandwidth allocation algorithm and analyse the performance of the proposed solution. By means of a case study, we show that the proposed solution has the potential to considerably reduce power consumption with respect to current router-based architectures. Finally, we propose a novel optical device able to solve contention directly in the optical domain withoutrequiring any optical buffering, electronic signalling or header processing. We show that thissimple device can be used as a building block for dynamic and power efficient short-range optical networks such as access networks or data centers.PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    A passive optical pod interconnect for high performance data centers

    No full text
    International audienceWe propose an original approach for realizing an all-optical data center interconnect. This consists in interconnecting racks of servers by WDM channels via an optical coupler and applying an EPON-like dynamic bandwidth allocation (DBA) algorithm. We apply this approach to design a switch-free, pod-sized data center interconnect that we call POPI for Passive Optical Pod Interconnect. Bandwidth sharing is realized by a central controller that implements an original MAC protocol and DBA algorithm. We evaluate latency and throughput performance, accounting for the dynamic, stochastic nature of data center traffic
    corecore